Data for Machine Learning

Prasanna Balaprakash
Computer Scientist
Mathematics and Computer Science Division & Leadership Computing Facility
Argonne National Laboratory
Types of data

Regular domain
- Spatial
- Temporal
- Spatio temporal
- Tabular

Irregular domain
- Graphs
- Temporal on graphs
- Point cloud
Regular domain

- Spatial (2D, 3D)
 - Images
 - Large data set
 - Deep learning
 » Conv. Neural Nets
 - Small data set
 - Z + Shallow learning
 » Z is domain-specific
 » Gaussian Process, Support Vector, Bagging, Boosting
 - Z + stats (geographical spatial data)
 » \texttt{https://cran.r-project.org/view=Spatial}
Regular domain

• Temporal
 – Time series
• Large data set
 – Deep learning
 » Temporal Conv
 » Recurrent NNs
• Small data set
 – Z + Stats
 » Z is domain-specific
 » https://cran.r-project.org/view=TimeSeries
Regular domain

- Spatiotemporal
 - Large data set
 - Deep learning
 » Conv NN + {TCN, RNN}
 - Small data set
 - Z + Stats
 » Z is domain-specific
 » https://cran.r-project.org/view=SpatioTemporal
Regular domain

- Uni/Multivariate/Tabular
 - $Y = f(X)$ type relationship
 - Large data set
 - Deep learning
 » Multi Layer Perceptron
 - Small data set
 - $Z +$ Shallow learning
 » Z is domain-specific
 » Gaussian Process, Support Vector, Bagging, Boosting
Irregular domain

• Graphs
 – $Y = f(V, E)$ type relationship
 • V: vertices; E: edges
 • Large data set
 – Deep learning
 » Graph Conv NN
 • Small data set
 – Z + Shallow learning
 » Z is domain-specific
 » Gaussian Process,
 Support Vector, Bagging, Boosting
Irregular domain

- Temporal on graphs
 - $Y = f(V, E, T)$ type relationship
 - V: vertices; E: edges; T: time series
 - Large data set
 - Deep learning
 » Graph CNN + RNN
 - Small data set
 - Z + Shallow learning
 » X is domain-specific
 » Gaussian Process, Support Vector, Bagging, Boosting
Irregular domain

• Point clouds
 – \(Y = f(3d \text{ coordinates in space}) \)
 • Large data set
 – Deep learning
 » Pointnet
 • Small data set
 – \(Z \) + Shallow learning
 » \(Z \) is domain-specific
 » Gaussian Process, Support Vector, Bagging, Boosting
Data requirement
Bias variance tradeoff

- All supervised learning algorithms seek to reduce bias and variance in a different way
- No free lunch: no single algorithm will work well on all data sets